LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.

Photo from wikipedia

Maltooligosaccharide-forming amylases (MFAses) are promising tools for a variety of food industry applications because of their ability to hydrolyze starch into maltooligosaccharides. However, high thermostability is a key requirement for… Click to show full abstract

Maltooligosaccharide-forming amylases (MFAses) are promising tools for a variety of food industry applications because of their ability to hydrolyze starch into maltooligosaccharides. However, high thermostability is a key requirement for enzymes used in these applications. In this work, we investigated the effect of Ca2+ and Na+ on the thermostability of an MFAse from Bacillus stearothermophilus (Bst-MFAse). The results showed that Ca2+ and Na+ synergistically prolong the half-life of Bst-MFAse. The most significant improvement, which preserved 71.1% of initial activity after incubation at 80 °C for 180 min, was achieved by adding 10 mM Ca2+ and 40 mM Na+ simultaneously. The increase in Bst-MFAse thermostability imparted by the addition of Ca2+ and Na+ may be associated with an important Ca2+-Na+-Ca2+ triad structure. This study provides an effective way to enhance the thermostability of Bst-MFAse and related enzymes.

Keywords: maltooligosaccharide forming; thermostability; enhance thermostability; ca2; bst mfase; bacillus stearothermophilus

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.