LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling counterion partition in composite gels of BSA with gelatin following high pressure treatment.

Photo by neom from unsplash

We examine the morphology of hydrogels made of bovine serum albumin and gelatin following high pressure processing at 300 MPa for 15 min at 10 and 80 °C. Emphasis is on the distribution… Click to show full abstract

We examine the morphology of hydrogels made of bovine serum albumin and gelatin following high pressure processing at 300 MPa for 15 min at 10 and 80 °C. Emphasis is on the distribution of added calcium counterions between the polymeric phases seen in changes in the structural properties of the composite gel. Protocol includes thermal and HPP treatments, dynamic oscillation rheology, ESEM, and modeling from the "synthetic polymer approach" to rationalize results. Pressurization at 10 °C produced continuous gelatin networks with dispersed BSA inclusions whereas pressurization at 80 °C yielded an inverse dispersion of BSA as the continuous phase supporting liquid gelatin inclusions. Lewis and Nielsen equations were adapted to predict the counterion distribution between the polymeric phases that profoundly affected the structural properties of the pressurized gels. The concept of counterion partition (pc) is introduced to the literature to follow the phase behavior of the composites in the presence of added calcium counterions.

Keywords: counterion partition; counterion; gelatin following; high pressure; following high; gelatin

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.