LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids.

Photo from wikipedia

We designed Air-in-Oil-in-Water (A/O/W) emulsions. First, Air-in-Oil foams were fabricated by whipping anhydrous milk fat. The maximum overrun was obtained at 20 °C. The foams contained 30-35 vol% air and were stabilized… Click to show full abstract

We designed Air-in-Oil-in-Water (A/O/W) emulsions. First, Air-in-Oil foams were fabricated by whipping anhydrous milk fat. The maximum overrun was obtained at 20 °C. The foams contained 30-35 vol% air and were stabilized solely by fat crystals. To refine the bubble size, foams were further sheared in a Couette's cell. The average bubble size reached a value as small as 6.5 μm at a shear rate of 5250 s-1. The nonaqueous foams were then dispersed in a viscous aqueous phase containing sodium caseinate to obtain A/O/W emulsions. The shear rate was varied from 1000 to 7500 s-1, allowing to obtain Air-in-Oil globules whose average diameter ranged from 15 to 60 μm. To avoid globule creaming, the aqueous phase was gelled by incorporating hydroxyethyl cellulose. Homogeneous emulsions were obtained with fat globules containing around 22 vol% of residual air. The systems were kinetically stable for at least 3 weeks at 4 °C.

Keywords: fat crystals; air oil; air; oil water

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.