LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae.

Photo from wikipedia

This study aimed to evaluate the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using a multi-response kinetic model and an empirical modified logistic model. Saccharomyces cerevisiae… Click to show full abstract

This study aimed to evaluate the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using a multi-response kinetic model and an empirical modified logistic model. Saccharomyces cerevisiae NCYC 88 (ale yeast) and S. pastorianus NCYC 203 (lager yeast) were used to understand the effect of fermentation type on tryptophan derivatives. According to the modified logistic model, tryptophan concentration was critical for the maximum production rate of kynurenic acid, a neuroprotective compound. The results indicated that utilization of tryptophan and kynurenic acid formation were faster in wort fermented with S. cerevisiae than with S. pastorianus. The reaction rate constants implied that the kynurenic acid formation stage was minor compared to other enzymatic reactions leading to NAD+ synthesis. Multi-response kinetic modeling of kynurenine pathway provided insights into tryptophan derivative formation, which can facilitate improved beer fermentation processing.

Keywords: fermentation; tryptophan derivatives; tryptophan; formation; formation tryptophan; kynurenine pathway

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.