LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles.

Photo by osheen_ from unsplash

In this study, the solubility of phloretin (PT) was enhanced via steviol glycoside (STE)-based micelle (MC) and solid dispersion (SD). Computer simulation, characterization, interaction with serum albumin (SA) and in… Click to show full abstract

In this study, the solubility of phloretin (PT) was enhanced via steviol glycoside (STE)-based micelle (MC) and solid dispersion (SD). Computer simulation, characterization, interaction with serum albumin (SA) and in vitro release were carried out to investigate the solubilization mechanisms and the difference in their solubilization capacities. For PT-loaded MC (STE-PT MC), PT was encapsulated into the hydrophobic core of a spherical micelle with a droplet diameter of 5 nm. For PT-loaded SD (STE-PT SD), PT was completely dispersed with the amorphous state in STE. Most of those PTs were directly dissolved in water, and few were encapsulated by STE micelles. The amorphous state combined with relatively large micelles contributed to the high solubilization capacity of STE-PT SD. In addition, PT of STE-PT SD exhibited a higher dissolution rate and more effective interaction with SA than that of STE-PT MC. No undesirable chemical interaction between PT and STE occurred.

Keywords: ste; phloretin; via steviol; solid dispersion; steviol glycoside; solubilization

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.