LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation kinetics of Maillard reaction intermediates from glycine-ribose system and improving Amadori rearrangement product through controlled thermal reaction and vacuum dehydration.

Photo from wikipedia

Amadori rearrangement product (ARP) is an ideal flavor precursor. The formation kinetics of ARP from glycine-ribose system, 3-deoxyribosone (3-DR) and 1-deoxyribosone (1-DR) were evaluated, and then controlled thermal reaction (CTR)… Click to show full abstract

Amadori rearrangement product (ARP) is an ideal flavor precursor. The formation kinetics of ARP from glycine-ribose system, 3-deoxyribosone (3-DR) and 1-deoxyribosone (1-DR) were evaluated, and then controlled thermal reaction (CTR) coupled with vacuum dehydration was proposed to improve the ARP yield. As key factors controlling the formation of byproducts, CTR temperature and time were optimized as 100 °C, 60 min based on the formation kinetics of the ARP and deoxyribosones. Vacuum dehydration was further used to increase the ARP yield from 0.77% to 64.50%, which was improved by 82.8 times, while 3-DR and 1-DR yield increased only by 1.5 and 3.7 times, respectively. The formation of ARP was the dominant reaction during vacuum dehydration. Under optimal conditions, CTR coupled with vacuum dehydration was an effective method to control byproducts formation and improve the ARP yield simultaneously. This method may offer a potential application in flavor enhancement of light-color food.

Keywords: vacuum dehydration; formation kinetics; reaction

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.