LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1.

Photo by andreacaramello from unsplash

In the present study, the CotA protein from Bacillus licheniformis ANSB821 was cloned and expressed in Escherichia coli. Apart from the laccase activities, we found that the recombinant CotA could… Click to show full abstract

In the present study, the CotA protein from Bacillus licheniformis ANSB821 was cloned and expressed in Escherichia coli. Apart from the laccase activities, we found that the recombinant CotA could effectively oxidize aflatoxin B1 in the absence of redox mediators. The Km, Kcat and Vmax values of the recombinant CotA towards aflatoxin B1 were 60.62 μM, 0.03 s-1 and 10.08 μg min-1 mg-1, respectively. CotA-mediated aflatoxin B1 degradation products were purified and identified to be aflatoxin Q1 and epi-aflatoxin Q1. The treatment of human liver cells L-02 with aflatoxin Q1 and epi-aflatoxin Q1 did not suppress cell viability and induce apoptosis. Molecular docking simulation revealed that hydrogen bonds and van der Waals interaction played an important role in aflatoxin B1-CotA stability. These findings in the current study are promising for a possible application of CotA as a novel aflatoxin oxidase in degrading AFB1 in food.

Keywords: cota; novel aflatoxin; bacillus licheniformis; aflatoxin epi; aflatoxin; epi aflatoxin

Journal Title: Food chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.