LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Change of benzo(a)pyrene during frying and its groove binding to calf thymus DNA.

Photo from archive.org

Benzo[a]pyrene (BaP), a prototype of polycyclic aromatic hydrocarbons (PAHs) with potential mutagenicity, toxicity and carcinogenicity, is ubiquitous in deep-fried foods. Herein, the changes in eight specific PAHs (PAH8) concentration in… Click to show full abstract

Benzo[a]pyrene (BaP), a prototype of polycyclic aromatic hydrocarbons (PAHs) with potential mutagenicity, toxicity and carcinogenicity, is ubiquitous in deep-fried foods. Herein, the changes in eight specific PAHs (PAH8) concentration in sunflower oil during frying were investigated by gas chromatography-triple quadrupole-mass spectrometry (GC-QqQ-MS). PAH8 concentrations in sunflower oil were 23.92-27.82 μg kg-1 and increased with increasing frying time. The detected BaP levels were 3.64-4.00 μg kg-1, exceeding the upper limit (2 μg kg-1) set by European Union (EU), though below the limiting value (10 μg kg-1) in China. The interaction between BaP and calf thymus DNA (ctDNA) was explored through various spectroscopic methods and molecular docking. Melting studies, denaturation experiments, ionic strength effects and viscosity measurements indicated that BaP interacted with ctDNA primarily via groove binding as evidenced by circular dichroism analysis and molecular docking. Further gel electrophoresis assays suggested that DNA was damaged at high levels of BaP.

Keywords: groove binding; thymus dna; dna; benzo pyrene; calf thymus

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.