LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism.

Photo from wikipedia

To monitor the residue of kitasamycin (KIT), a monoclonal antibody against KIT was prepared, and a 50% inhibition concentration (IC50) of 5.7 ± 1.4 μg/L was achieved with the most sensitive antibody, KA/2A9,… Click to show full abstract

To monitor the residue of kitasamycin (KIT), a monoclonal antibody against KIT was prepared, and a 50% inhibition concentration (IC50) of 5.7 ± 1.4 μg/L was achieved with the most sensitive antibody, KA/2A9, by optimizing ELISA conditions. The LODs for KIT in different animal tissues ranged from 22.47 μg/kg to 29.32 μg/kg, and the recoveries of the fortified tissues were 70% ~ 120% with coefficients of variation below 20%. Then, KIT-specific scFv KA/2A9/3 was prepared for the first time. Homologous modeling and molecular docking results indicated that the key amino acids of KA/2A9/3 scFv are TYR-92 (CDRL3), SER-93 (CDRL3), ASP-155 (CDRH1) and GLY-226 (CDRH3), and the hydrogen bond is the main force. And then, virtual mutation provides a method to evolve KA/2A9/3 scFv antibodies. These results contribute to comprehending the antigen-antibody binding mechanism and provide effective information for in vitro affinity maturation of anti-KIT scFv.

Keywords: based elisa; animal tissues; development monoclonal; kitasamycin; mechanism; monoclonal based

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.