LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative proteomic analysis of beef tenderness of Piemontese young bulls by SWATH-MS.

Photo from wikipedia

Quantitative proteomic approach is a suitable way to tackle the beef tenderness. Ten aged-beef samples from Longissimus thoracis of Piemontese breed classified as tender (n = 5) and tough (n = 5) meat were… Click to show full abstract

Quantitative proteomic approach is a suitable way to tackle the beef tenderness. Ten aged-beef samples from Longissimus thoracis of Piemontese breed classified as tender (n = 5) and tough (n = 5) meat were evaluated using SWATH-MS and bioinformatic tools for the identification of the proteins and pathways most influencing tenderness variability. Between the two textural groups, proteomic changes were mainly caused by 43 differentially abundant proteins (DAPs) arranged in reference patterns as displayed by the heat map analysis. Most of these DAPs were associated with energy metabolism. From the functional proteomic analysis, two clusters of proteins, including ACO2, MDH1, MDH2 and CS in one cluster and FBP2, PFKL, LDHA, TPI1 and GAPDH/S in the other cluster, suggest gluconeogenesis, glycolysis and citrate cycle as key pathways for Piemontese breed beef tenderness. These findings contribute to a deeper insight into molecular pathways related to beef tenderness.

Keywords: beef tenderness; beef; quantitative proteomic; proteomic analysis

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.