LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode.

Photo from wikipedia

This work reports the electrochemical detection of bisphenol A (BPA) using a novel and sensitive electrochemical sensor based on the Cu functionalized SBA-15 like periodic mesoporous organosilica-ionic liquid composite modified… Click to show full abstract

This work reports the electrochemical detection of bisphenol A (BPA) using a novel and sensitive electrochemical sensor based on the Cu functionalized SBA-15 like periodic mesoporous organosilica-ionic liquid composite modified glassy carbon electrode (Cu@TU-PMO/IL/GCE). The structural morphology of Cu@TU-PMO is characterized by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET). The catalytic activity of the modified electrode toward oxidation of BPA was interrogated with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in phosphate buffer solution (pH 7.0) using the fabricated sensor. The electrochemical detection of the analyte was carried out at a neutral pH and the scan rate studies revealed that the sensor was stable. Under the optimal conditions, a linear range from 5.0 nM to 2.0 µM and 4.0 to 500 µM for detecting BPA was observed with a detection limit of 1.5 nM (S/N = 3). The sensor was applied to detect BPA in tap and seawater samples, and the accuracy of the results was validated by high-performance liquid chromatography (HPLC). The proposed method provides a powerful tool for the rapid and sensitive detection of BPA in environmental samples.

Keywords: modified glassy; detection; microscopy; detection bisphenol; electrochemical detection; sba like

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.