To explore the interaction between A/B starch and gluten, the rheological and structural properties of starch-gluten dough with varied A/B starch ratios during mixing were investigated. The G' and G″… Click to show full abstract
To explore the interaction between A/B starch and gluten, the rheological and structural properties of starch-gluten dough with varied A/B starch ratios during mixing were investigated. The G' and G″ values of under- and overdeveloped dough with an A/B starch ratio of 5:5 were higher than those of dough with other ratios and decreased as the A/B starch ratio increased in optimized dough. B starch enhanced extension resistance and dough firmness. Small B starch granules promoted continuous gluten network formation, while large A starch granules readily separate from the gluten network. B starch promoted GMP polymerization. Covalent bonds were the main force involved in A starch-gluten interactions. Hydrophobic interactions were the main force in the under- to optimum-mixing stages, whereas hydrogen and covalent bonds were involved in B starch-gluten interactions from the optimum- to over-mixing stages. A model describing the interactions between gluten and starch components was proposed.
               
Click one of the above tabs to view related content.