LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH-Dependent complexation between β-lactoglobulin and lycopene: Multi-spectroscopy, molecular docking and dynamic simulation study.

Photo by aaronburden from unsplash

This study aims to investigate the effect of pH levels (pH 7.0 and pH 8.1) on binding ability of β-lactoglobulin (β-LG) with lycopene (LYC) and elucidate interaction mechanisms using multi-spectroscopy… Click to show full abstract

This study aims to investigate the effect of pH levels (pH 7.0 and pH 8.1) on binding ability of β-lactoglobulin (β-LG) with lycopene (LYC) and elucidate interaction mechanisms using multi-spectroscopy and molecular docking study. β-LG at pH 8.1 showed a stronger binding affinity to lycopene than that at pH 7.0 according to binding constant, binding number, energy transfer efficiency, and surface hydrophobicity. Lycopene bound to protein mainly by van der Waals force in the form of static quenching mode and preferred to interact with β-LG at the top of barrel for both pH levels. Molecular dynamic simulation revealed that β-LG/LYC complex at pH 8.1 was more stable than at pH 7.0. β-LG/LYC complexes formed at pH 8.1 showed significantly higher ABTS radical scavenging activity than samples at pH 7.0 (p < 0.05). Data obtained may contribute valuable information for preparing a whey protein-based delivery system for lycopene.

Keywords: spectroscopy molecular; study; lactoglobulin lycopene; multi spectroscopy; spectroscopy

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.