The effect of high amylose corn starch (HAS)-fatty acid complexes on the gel properties, protein secondary structure, microstructure, fatty acid content, and sensory properties of surimi under high-temperature treatment were… Click to show full abstract
The effect of high amylose corn starch (HAS)-fatty acid complexes on the gel properties, protein secondary structure, microstructure, fatty acid content, and sensory properties of surimi under high-temperature treatment were investigated. The formation of HAS-fatty acid complexes increased melting temperature and decreased average particle size of HAS. The addition of HAS-fatty acid complexes significantly improved the breaking force, deformation and whiteness of surimi gels. The water in surimi gels containing HAS or HAS-fatty acid complexes became increasingly immobilized. HAS or HAS-fatty acid complexes promoted protein conformational transition from α-helix structure to other three secondary structure. Surimi gels added with HAS-fatty acid complexes had more compact network structure and higher fatty acid content. Moreover, the better sensory properties were obtained in surimi gels containing HAS-fatty acid complexes. Therefore, starch-fatty acid complexes not only could improve the gel properties of surimi, but also enhance its fatty acid content.
               
Click one of the above tabs to view related content.