LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porous carbon derived from ZIF-8 modified molecularly imprinted electrochemical sensor for the detection of tert-butyl hydroquinone (TBHQ) in edible oil.

Photo by alex_andrews from unsplash

In this manuscript, ZIF-8 derived nanoporous carbon material (ZC) was prepared and used as modification material to construct a molecularly imprinted electrochemical sensor for the direct detection of tert-butyl hydroquinone… Click to show full abstract

In this manuscript, ZIF-8 derived nanoporous carbon material (ZC) was prepared and used as modification material to construct a molecularly imprinted electrochemical sensor for the direct detection of tert-butyl hydroquinone (TBHQ) in edible oil. Electrochemical characterizations, scanning electron microscopy and X-ray diffraction show that ZC has excellent conductivity, high electrochemical active area and stable porous framework structure. Using TBHQ as template and o-phenylenediamine as functional monomer, the sensor was constructed. Experimental parameters such as the number of polymerization cycle, polymerization speed, and pH of the measured solution, removal and rebinding time were studied. Under optimized conditions, the prepared sensor showed a wider linear range from 1.0 μmol L-1 to 75.0 μmol L-1 with the detection limit of 0.42 μmol L-1 (S/N = 3). Meanwhile, the sensor also expressed good selectivity, repeatability, reproducibility, stability and successfully applied for the determination of TBHQ in real edible oil, giving satisfactory results.

Keywords: sensor; detection; tbhq; molecularly imprinted; edible oil

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.