LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles: Stability of ionic strength and temperature.

Photo by des0519 from unsplash

The oil-in-water high internal phase emulsions (HIPEs) could be stabilized by pea protein isolate nanoparticles (PPINs) induced by potassium metabisulfite (K2S2O5). Confocal laser scanning microscope proved that PPINs were attached… Click to show full abstract

The oil-in-water high internal phase emulsions (HIPEs) could be stabilized by pea protein isolate nanoparticles (PPINs) induced by potassium metabisulfite (K2S2O5). Confocal laser scanning microscope proved that PPINs were attached on the oil-water interface, indicating characteristic of Pickering HIPEs. The HIPEs stabilized by PPINs of higher concentration had smaller droplet size, better storage and centrifugal stability than that of PPINs of low concentration because there were enough particles to constitute the thick interface film. The storage modulus was higher than loss modulus indicating that HIPEs exhibited gel-like structure. At different temperatures and ionic strengths, HIPEs exhibited flocculation but still maintained a stable gel-like structure. The strain curve of HIPEs showed Type III nonlinear behavior due to the flocculation of emulsion droplets. HIPEs stabilized by PPINs might be a potential alternative to partially hydrogenated oils to reduce intake of trans fatty acids.

Keywords: phase emulsions; internal phase; isolate nanoparticles; pea protein; high internal; protein isolate

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.