Hydrophilic constituents are significant for the taste and nutrition of tea, but their simultaneous quantification remains challenging due to the lack of efficient methods. Based on the hydrophilic interaction chromatography… Click to show full abstract
Hydrophilic constituents are significant for the taste and nutrition of tea, but their simultaneous quantification remains challenging due to the lack of efficient methods. Based on the hydrophilic interaction chromatography coupled with triple quadrupole-tandem mass spectrometry, this work developed and validated an efficient (8.5 min per run), sensitive (LOQ: 0.002-0.493 μg/mL) and accurate method. This method was successfully used to determine the contents of 45 hydrophilic constituents in Yunnan large-leaf tea. Umami amino acids and umami-enhanced nucleotides generally exhibited higher content in green tea and Pu-erh raw tea. By contrast, a few number of amino acids (e.g., proline and γ-aminobutyric acid) and most alkaloids and nucleosides showed significantly higher contents in black tea or Pu-erh ripen tea. By performing the orthogonal partial least squares discriminant analysis, classification models for distinguishing four types of tea, and green tea from Pu-erh raw tea were established.
               
Click one of the above tabs to view related content.