LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The interaction between bovine serum albumin and [6]-,[8]- and [10]-gingerol: an effective strategy to improve the solubility and stability of gingerol

Photo by motorbajker from unsplash

Abstract In this study, the binding mechanism between bovine serum albumin (BSA) and three gingerols ([6]-, [8]- and [10]-gingerol) was evaluated to explore an effective strategy for improving solubility and… Click to show full abstract

Abstract In this study, the binding mechanism between bovine serum albumin (BSA) and three gingerols ([6]-, [8]- and [10]-gingerol) was evaluated to explore an effective strategy for improving solubility and stability of gingerols. The fluorescence analysis suggested gingerols could bind with BSA to form a stable BSA/gingerols complex and [10]-gingerol had the strongest binding affinity (Ka = 4.016 × 104 L/mol) at 298 K. Thermodynamic parameters and molecular modeling validated that hydrophobic interaction and hydrogen bonds were the main driving force for the interaction of BSA/gingerols. Gingerols bound to BSA at site I (subdomain IIA) resulted in a conformational change of BSA with a structure shrinkage, which was responsible for the decrease of surface hydrophobicity. The formation of BSA/gingerols complexes promoted the solubility of [6]-, [8]- and [10]-gingerol increasing by 1.50, 6.04 and 23.50 times, respectively. In addition, the stability and antioxidant capacity of gingerols was significantly improved after binding with BSA.

Keywords: bsa; gingerol; solubility; interaction; stability; bovine serum

Journal Title: Food Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.