LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

α-Glucosidase inhibitors from brown rice bound phenolics extracts (BRBPE): Identification and mechanism.

Photo by milkbox from unsplash

Brown rice bound phenolics extracts (BRBPE) have been reported to possess α-glucosidase inhibitory effects, the specific enzyme inhibitors involved in this process were unknown. Here, α-glucosidase inhibitors in BRBPE were… Click to show full abstract

Brown rice bound phenolics extracts (BRBPE) have been reported to possess α-glucosidase inhibitory effects, the specific enzyme inhibitors involved in this process were unknown. Here, α-glucosidase inhibitors in BRBPE were screened using bioaffinity ultrafiltration methods, and seven phenolic compounds - three monomers (p-coumaric acid, ferulic acid and methyl ferulate), three dimers (8-5', 5-5' and 8-O-4' diferulic acid) and a trimer (5-5'/8-O-4″ dehydrotriferulic acid) were identified as exact inhibitors, among which 5-5'/8-O-4″ dehydrotriferulic acid and 5-5'diferulic acid exhibited the best inhibitory activity. Enzyme kinetic analysis suggested that the inhibitory mechanism of these seven inhibitors including competitive, noncompetitive, uncompetitive and mixed manner. Molecular docking analysis revealed that the seven inhibitors bind with α-glucosidase mainly by hydrogen bonding interaction, hydrophobic force and ionic bond. Molecular dynamics simulation further explored the structure and molecular property of phenolic-glucosidase complex. This work provided a deep insight into brown rice bound phenolics acting as potent α-glucosidase inhibitors.

Keywords: rice bound; bound phenolics; glucosidase inhibitors; brown rice; glucosidase

Journal Title: Food chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.