LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ratiometric immunosensor with DNA tetrahedron nanostructure as high-performance carrier of reference signal and its applications in selective phoxim determination for vegetables.

Photo by aiony from unsplash

A ratiometric electrochemical immunosensor, based on DNA tetrahedron nanostructure (DTNS), is introduced for vegetable phoxim determination. DTNS spontaneously adheres onto gold-nanoparticle-modified electrode and forms stable three-dimensional structure, providing plenty of… Click to show full abstract

A ratiometric electrochemical immunosensor, based on DNA tetrahedron nanostructure (DTNS), is introduced for vegetable phoxim determination. DTNS spontaneously adheres onto gold-nanoparticle-modified electrode and forms stable three-dimensional structure, providing plenty of binding sites to the built-in reference, methylene blue (MB). Monoclonal antibody (m-Ab) is vertically linked onto DTNS vertex, selectively responses antigenic phoxim, and promotes the target signal of IPHO. Thus, a ratiometric indicator, IPHO/IMB, is sensibly established with the target signal (IPHO) and the reference signal (IMB). Modifications, mechanisms and advances of the proposed method are subsequently examined with morphological methods and electrochemical experiments. This method brings considerable advances in analytical behaviors. The ratiometric signal presents better performance than solo system in repeatability and long-time stability. As-fabricated sensor presents wide dynamic range as 0.1∼30 μg/L, and limit of detection is well defined as 0.003 μg/L (S/N = 3). Finally, this method is verified with real-vegetable-sample analysis, certified HPLC and recovery test.

Keywords: reference; tetrahedron nanostructure; immunosensor; phoxim determination; reference signal; dna tetrahedron

Journal Title: Food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.