Herein, a novel lab-on-a-chip (LoC) device fabricated by 3D printing based on H2O2-producing enzymatic reactions with sensitive chemiluminescence (CL) detection was developed to measure different sugars, including glucose, fructose, sucrose,… Click to show full abstract
Herein, a novel lab-on-a-chip (LoC) device fabricated by 3D printing based on H2O2-producing enzymatic reactions with sensitive chemiluminescence (CL) detection was developed to measure different sugars, including glucose, fructose, sucrose, and maltose, in honey, juice, and rice flour samples. The pumpless microchip included two main parts, separated by new cone-shape blocking valves; part A for sample introduction and subsequent enzymatic reaction, besides the CL reagent (luminol) container, and part B for detection. The specific enzyme(s) were embedded into the pores of the zinc zeolite-imidazole framework (ZIF-8) to improve their storage stability. By opening the valves, H2O2 produced by enzymatic reaction and luminol could flow through the designed channels into the detection zone on part B, where a 2D cobalt-imidazole framework was embedded to improve the luminol-H2O2 CL emission. The obtained signal was proportional to the considered sugar concentration, with the detection limits range of 20-268 µM.
               
Click one of the above tabs to view related content.