LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lipid oxidation and in vitro digestion of pickering emulsion based on zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles.

Photo by zvessels55 from unsplash

This study first used adzuki bean seed coat polyphenol (ABSCP) to modify zein and form covalent nanoparticles (ZAP) and used ZAP as an emulsifier to stabilize Pickering emulsion (ZAE). The… Click to show full abstract

This study first used adzuki bean seed coat polyphenol (ABSCP) to modify zein and form covalent nanoparticles (ZAP) and used ZAP as an emulsifier to stabilize Pickering emulsion (ZAE). The results showed that the ratio of zein-ABSCP controlled the physicochemical properties of the two compounds. ZAP could be absorbed on the water-oil surface and stabilized ZAE, which presented as a non-Newtonian fluid state with good rheological properties. The addition of ABSCP inhibited lipid oxidation in a dose-dependent manner, as verified through the analysis of accelerated oxidation experiments (50 °C, 20 days). In in vitro gastrointestinal digestion of ZAE showed that free fatty acids (FFA) release gradually decreased with ABSCP concentration increasing. Moreover, ABSCP gave ZAE a strong red-yellow color, which allowed ZAE to be used for specific applications (e.g., natural pigments). Our findings make it feasible to develope functional food and food-grade delivery systems made of protein-plant polyphenols nanoparticles.

Keywords: seed coat; oxidation; zae; seed; bean seed; adzuki bean

Journal Title: Food chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.