LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network

Photo by louishansel from unsplash

Currently, the food safety incidents happened frequently in china and the customer confidence declined rapidly, then the problems related to food quality and safety have attracted more and more social… Click to show full abstract

Currently, the food safety incidents happened frequently in china and the customer confidence declined rapidly, then the problems related to food quality and safety have attracted more and more social attention. Considering the concern with regard to food quality assurance and consumer confidence improvement, many companies have developed a traceability system to visualize the supply chain and avoid food safety incidents. In this paper, we proposed an improved food traceability system which can not only achieve forward tracking and diverse tracing like the existing systems do, but also evaluate the food quality timely along the supply chain and provide consumers with these evaluating information, to mainly enhance the consumer experience and help firms gain the trust of consumers. For the food quality evaluation, the method of fuzzy classification was used to evaluate the food quality at each stages of supply chain while the artificial neural network was adopted to derive the final determination of the grade of food quality according to all the stage quality evaluations. A case study of a pork producer was conducted, and the results showed that the improved traceability system performed well in food quality assurance and evaluation. In addition, implications of the proposed approach were discussed, and suggestions for future work were outlined.

Keywords: food quality; quality; food; traceability system

Journal Title: Food Control
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.