LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions

Photo from wikipedia

Abstract This study microencapsulated anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying using different inlet air temperatures (120, 140 and 160 °C) and wall materials (maltodextrin DE20 and hi-maize)… Click to show full abstract

Abstract This study microencapsulated anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying using different inlet air temperatures (120, 140 and 160 °C) and wall materials (maltodextrin DE20 and hi-maize) to evaluate the microcapsule characteristics, stability and behavior under simulated gastrointestinal tract conditions. The encapsulation efficiency, moisture content, water activity, particle size, determination of total monomeric anthocyanins, storage stability, morphology and simulated gastrointestinal conditions were analyzed as responses. The microcapsules produced with different wall materials and different inlet temperatures presented an encapsulation efficiency between 74.40 and 85.22%. The microcapsule which presented the lowest degradation constant (0.0060) and longest half-life (115.47 days) during storage was treatment T3 (9% maltodextrin DE20 and 9% hi-maize) at 140 °C. Treatment T3 also presented more uniform particles, ensuring a better protection and retention of the active material. Microencapsulation was effective in protection during storage and improved the delivery of compounds of interest under the simulated gastrointestinal conditions in comparison to the free extract during all the steps that comprised the simulated gastric system.

Keywords: compounds extracted; gastrointestinal conditions; simulated gastrointestinal; stability; anthocyanin compounds; extracted blueberry

Journal Title: Food Hydrocolloids
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.