LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs.

Photo from wikipedia

The pharmacoresistance to antiepileptic drugs (AEDs) remains a major unsolved therapeutic need. The overexpression of multidrug transporters, as the P-glycoprotein (P-gp), at the level of the blood-brain barrier of epileptic… Click to show full abstract

The pharmacoresistance to antiepileptic drugs (AEDs) remains a major unsolved therapeutic need. The overexpression of multidrug transporters, as the P-glycoprotein (P-gp), at the level of the blood-brain barrier of epileptic patients has been suggested as a key mechanism underlying the refractory epilepsy. Thus, efforts have been made to search for therapeutically useful P-gp inhibitors. Herein, the strategy of flavonoid/AED combined therapy was exploited as a possible approach to overcome the P-gp-mediated pharmacoresistance. For this purpose, several in vitro studies were performed using Madin-Darby canine kidney II (MDCK II) cells and those transfected with the human multidrug resistance-1 (MDR1) gene, overexpressing the P-gp (MDCK-MDR1). Overall, the results showed that baicalein, (-)-epigallocatechin gallate, kaempferol, quercetin and silymarin, at 200μM, produced a marked increase on the intracellular accumulation of rhodamine 123 in MDCK-MDR1 cells, potentially through inhibiting the P-gp activity. In addition, with the exception of lamotrigine, all other AEDs tested (phenytoin, carbamazepine and oxcarbazepine) and their active metabolites (carbamazepine-10,11-epoxide and licarbazepine) demonstrated to be P-gp substrates. Furthermore, the most promising flavonoids as P-gp inhibitors promoted a significant increase on the intracellular accumulation of the AEDs (excluding lamotrigine) and their active metabolites in MDCK-MDR1 cells, evidencing to be important drug candidates to reverse the AED-resistance. Thus, the co-administration of AEDs with baicalein, (-)-epigallocatechin gallate, kaempferol, quercetin and silymarin should continue to be explored as adjuvant therapy for refractory epilepsy. List of chemical compounds studied in this article: Baicalein (PubChem CID: 5,281,605); Carbamazepine (PubChem CID: 2554); Carbamazepine 10,11-epoxide (PubChem CID: 2555); (-)-Epigallocatechin gallate (PubChem CID: 65064); Kaempferol (PubChem CID: 5280863); Lamotrigine (PubChem CID: 3878); Licarbazepine (PubChem CID: 114709); Oxcarbazepine (PubChem CID: 34312); Phenytoin (PubChem CID: 1775); Silymarin (PubChem CID: 7073228); Quercetin (PubChem CID: 5280343); Verapamil (PubChem CID: 2520).

Keywords: antiepileptic drugs; pubchem cid; pubchem; multidrug resistance

Journal Title: Food research international
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.