LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of micro wet milling on bioaccessibility of phosphatidic acid and lysophosphatidic acid in komatsuna during in vitro digestion.

Photo by paramir from unsplash

Foods rich in phosphatidic acid (PA) can ameliorate stomach ulcers in mice by hydrolysis of PA to lysophosphatidic acid (LPA). In this study, PA-rich komatsuna was produced using the micro… Click to show full abstract

Foods rich in phosphatidic acid (PA) can ameliorate stomach ulcers in mice by hydrolysis of PA to lysophosphatidic acid (LPA). In this study, PA-rich komatsuna was produced using the micro wet milling (MWM) system, which can mill food products into micrometer-scale without causing detrimental factors such as frictional heat. To evaluate the efficiency of the MWM system in increasing PA and forming LPA, the availability of PA in the MWM komatsuna to hydrolyze into LPA under in vitro simulated gastrointestinal (GI) digestion conditions were investigated. The results showed that through effective MWM milling, komatsuna was sufficiently milled into smaller particles, and PA was abundantly produced in the milled komatsuna; the increased PA promoted LPA formation during digestion, resultant a dominant molecular species of 16:0 LPA which could effectively reduce ulcer lesions. These indicated that MWM can elevate the bioaccessibility of komatsuna PA and LPA in the GI tract, which will benefit the dietary treatment of stomach ulcers.

Keywords: komatsuna; digestion; micro wet; lysophosphatidic acid; acid; phosphatidic acid

Journal Title: Food research international
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.