LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Archaeal hyperthermostable mannitol dehydrogenases: A promising industrial enzymes for d-mannitol synthesis.

Recently, the term healthy lifestyle connected to low-calorie diets, although it is not possible to get rid of added sugars as a source of energy, despite the close relation of… Click to show full abstract

Recently, the term healthy lifestyle connected to low-calorie diets, although it is not possible to get rid of added sugars as a source of energy, despite the close relation of added sugars to some diseases such as obesity, diabetes, etc. As a result, the sweetener market has flourished, which has led to increased demand for natural sweeteners such as polyols, including d-mannitol. Various methods have been developed to produce d-mannitol to achieve high productivity and low cost. In particular, metabolic engineering for d-mannitol considers one of the most promising approaches for d-mannitol production on the industrial scale. To date, the chemical process is not ideal for large-scale production because of its multistep mechanism involving hydrogenation and high cost. In this review, we highlight and present a comparative evaluation of the biochemical parameters that affecting d-mannitol synthesis from Thermotoga neapolitana and Thermotoga maritima mannitol dehydrogenase (MtDH) as a potential contribution for d-mannitol bio-synthesis. These species were selected because purified mannitol dehydrogenases from both strains have been reported to produce d-mannitol with no sorbitol formation under temperatures (90-120 °C).

Keywords: mannitol dehydrogenases; mannitol; hyperthermostable mannitol; archaeal hyperthermostable; mannitol synthesis; synthesis

Journal Title: Food research international
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.