The encapsulation efficiency of spray-dried cocona pulp encapsulated with a blend of maltodextrin (MD) and hydrolyzed collagen (HC) (CP-ENC) and the stability, color parameters, antioxidant capacity (FRAP and ABTS), and… Click to show full abstract
The encapsulation efficiency of spray-dried cocona pulp encapsulated with a blend of maltodextrin (MD) and hydrolyzed collagen (HC) (CP-ENC) and the stability, color parameters, antioxidant capacity (FRAP and ABTS), and 5-caffeoylquinic acid content were evaluated through 120 days of storage, at every 15 days, at 25 and 35 °C. The results of CP-ENC were compared to those of pure freeze-dried cocona pulp (CP-nENC). The sorption isotherms and glass transition temperatures (Tg) were determined in order to evaluate the stability of the cocona powder. The GAB model fitted well the experimental data for moisture sorption of samples. The high Tg for CP-ENC (132.02 °C) was attributed to the high molecular weight of encapsulating agents. The encapsulation efficiency and color parameters for CP-ENC kept constant values for 120 days. A loss of 30% in the antioxidant capacity occurred on day 75 for CP-ENC. The values of retention of 5-CQA for CP-ENC (83% and 68% when stored at 25 and 35 °C, respectively) were greater than those observed for CP-nENC. At 25 °C, stored CP-ENC had a higher retention and a longer half-life of 5-CQA (14.4 months) than CP-nENC. The results suggest that it is suitable to microencapsulate cocona pulp with MD and HC to improve protection of antioxidant compounds, throughout storage at 25 °C.
               
Click one of the above tabs to view related content.