LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production system influences tomato phenolics and indoleamines in a cultivar-specific manner.

Photo from wikipedia

Tomato (Solanum lycopersicum) fruit is a rich source of health-promoting compounds, and epidemiological studies show that tomato consumption may reduce the risk of chronic diseases. This study compared the effect… Click to show full abstract

Tomato (Solanum lycopersicum) fruit is a rich source of health-promoting compounds, and epidemiological studies show that tomato consumption may reduce the risk of chronic diseases. This study compared the effect of genotype, production system, and their interaction on eight tomato varieties grown in the open-field (OF) or net-house (NH), a structure completely covered with a 50-mesh screen to reduce pest and wind damage, in South Texas. The NH structure reduced solar radiation up to ~30% and decreased wind speed by 6.44 km/h compared with conditions measured in the OF. We simultaneously analyzed 16 phenolics and indoleamines using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UHPLC/ESI-HR-QTOFMS). The chemometric analysis showed a distinct difference between NH- and OF-grown tomatoes irrespective of the variety. The melatonin and serotonin contents showed a cultivar-specific effect of the production system. Likewise, the effect of cultivation systems on levels of phenolic acids and flavonoids varied based on tomato cultivar. Among the studied phenolic acids, significantly enhanced levels of sinapic acid were observed in OF-grown tomatoes. Similarly, we detected a considerable genotypic effect on gallic acid, p-coumaric acid, ferulic acid, sinapic acid, and naringin. The interaction of cultivar and production system substantially affected gallic acid, protocatechuic acid, sinapic acid, and apigenin. However, further studies need to be performed to explore the environment-specific effects on the total composition. In summary, our results indicate that the production system plays an important role in tomato composition beyond the natural genetic variation among cultivars.

Keywords: production; cultivar specific; acid; production system; phenolics indoleamines

Journal Title: Food research international
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.