This study investigated the effects of ultrasound assisted-subcritical water (U-SW), subcritical water (SW), ultrasound (U) and hot water (HW) pretreatments and acid hydrolysis (AH) and alkaline hydrolysis (AlkH) on the… Click to show full abstract
This study investigated the effects of ultrasound assisted-subcritical water (U-SW), subcritical water (SW), ultrasound (U) and hot water (HW) pretreatments and acid hydrolysis (AH) and alkaline hydrolysis (AlkH) on the phenolic composition, antioxidant potential and cytotoxicity of Tartary buckwheat hull extracts. The Folin Ciocalteu assay and HPLC-MS were used to characterize and quantify phenolics of the extracts. The ABTS, FRAP and TEAC assays were used to measure antioxidant activity and the MTT assay was used to measure cytotoxicity of the extracts in HepG2 human liver cancer cells. Results showed that U-SW gave the best AH yield of phenolics (128.45), followed by SW (85.82) and U (64.70), compared to the control, HW (35.82 mgg-1). The same trend was observed for phenols extracted using AlkH. U-SW had the highest antioxidant activity, followed by SW and U regardless of hydrolytic method used. Cytotoxicity followed a similar trend with U-SW and SW being the most cytotoxic to liver cancer cells, followed by U, with the least being HW. The findings suggested that plant materials such as Tartary buckwheat hulls can be pretreated with U-SW, SW and U prior to hydrolytic recovery of bound polyphenols. Also, AH was more efficient than AlkH for phenol extraction, and gave extracts with higher antioxidant activity and cytotoxicity in HepG2 liver carcinoma cells. This application allows for beneficial usage of agricultural biomass and help diversify income sources and products for industry.
               
Click one of the above tabs to view related content.