LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Forensic genetic investigation of human skeletal remains recovered from the La Belle shipwreck.

Photo from wikipedia

In 1995, the historical shipwreck of La Belle was discovered off the coast of Texas. One partial human skeleton was recovered from alongside cargo in the rear portion of the… Click to show full abstract

In 1995, the historical shipwreck of La Belle was discovered off the coast of Texas. One partial human skeleton was recovered from alongside cargo in the rear portion of the ship; a second (complete) skeleton was found atop coiled anchor rope in the bow. In late 2015, comprehensive forensic genetic testing began on multiple samplings from each set of remains. For the partial skeleton recovered from the ship's rear cargo area, results were obtained for 26/27 Y-STRs using traditional CE; with MPS technology, results were obtained for 18/24 Y-STRs, 56/56 ancestry-informative SNPs (aiSNPs), 22/22 phenotype-informative SNPs (piSNPs), 22/27 autosomal STRs, 4/7 X-STRs, and 94/94 identity-informative SNPs (iiSNPs). For the complete skeleton of the second individual, results were obtained for 7/17 Y-STRs using traditional CE; with MPS technology, results were obtained for 5/24 Y-STRs, 49/56 aiSNPs, 18/22 piSNPs, 15/27 autosomal STRs, 1/7 X-STRs, and 66/94 iiSNPs. Biogeographic ancestry for each set of skeletal remains was predicted using the ancestry feature and metapopulation tool of the Y-STR Haplotype Reference Database (YHRD), Haplogroup Predictor, and the Forensic Research/Reference on Genetics knowledge base (FROG-kb). Phenotype prediction was performed using piSNP data and the HIrisplex eye color and hair color DNA phenotyping webtool. mtDNA whole genome sequencing also was performed successfully. This study highlights the sensitivity of current forensic laboratory methods in recovering DNA from historical and archaeological human remains. Using advanced sequencing technology provided by MiSeq™ FGx (Verogen) and Ion S5™ (Thermo Fisher Scientific) instrumentation, degraded skeletal remains can be characterized using a panel of diverse and highly informative markers, producing data which can be useful in both forensic and genealogical investigations.

Keywords: obtained strs; results obtained; skeleton; forensic genetic; skeletal remains

Journal Title: Forensic science international
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.