LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur

Photo by erikspin from unsplash

Abstract The high contents of AAEM (alkali and alkaline earth metals) and sulfur in zhundong coal result in more fine particulate matter during coal combustion. In this paper, the emission… Click to show full abstract

Abstract The high contents of AAEM (alkali and alkaline earth metals) and sulfur in zhundong coal result in more fine particulate matter during coal combustion. In this paper, the emission of fine particulates from zhundong coal riched in AAEM-sulfur and zhunnan coal riched in aluminum-silicon was investigated in a drop tube furnace. Co-combustion of zhundong coal and zhunnan coal was further investigated to study the effect of interaction among different elements in coal on the PM formation. The size distribution, concentration and composition of the particulates were analyzed by low pressure impactor (DLPI) and scanning electron microscopy (SEM). The distribution of sodium, magnesium, calcium, iron and sulfur in fine particulates and their effects on the generation of fine particulates were obtained. The results show that the fine particulates from AAEM-sulfur rich coal combustion mainly consist of sulfates and oxides of AAEM. The amount of fine particulates from burning aluminum-silicon rich coal decreased significantly. The composition of PM 0.4 and PM 0.4+ are significantly different. Co-firing of AAEM-sulfur rich coal with aluminum-silicon rich coal has an obviously synergetic effect of reducing the fine particulates emission. The capture of AAEM and iron by aluminum-silicon compounds plays an important role in PM 10 reduction during blended coal combustion. The change of sulfur content in PM 0.4 is consistent with the change of AAEM content.

Keywords: alkali alkaline; combustion; fine particulates; coal; sulfur; aaem alkali

Journal Title: Fuel
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.