LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined production of power and syngas in an internal combustion engine – Experiments and simulations in SI and HCCI mode

Abstract In this work, an internal combustion engine is used as a reactor for partial oxidation to produce syngas together with mechanical work. Experiments were performed in a single-cylinder engine… Click to show full abstract

Abstract In this work, an internal combustion engine is used as a reactor for partial oxidation to produce syngas together with mechanical work. Experiments were performed in a single-cylinder engine operated on methane/air. Spark-ignition (SI) and homogeneous-charge compression-ignition (HCCI) were investigated. For HCCI, 5 mol% n-heptane were added to the fuel to reduce auto-ignition temperatures. With spark ignition at ϕ = 1.56, the product gas contained up to 8.6 mol% CO and 7.7 mol% H 2 at 71.5% exergetic efficiency, while at ϕ = 0.72 roughly the same mechanical work was generated, but with only 42.5% exergetic efficiency. Under the richer conditions achievable in HCCI combustion, syngas content increased to 15.8 mol% CO and 17.9 mol% H 2 , and the exergetic efficiency to 81.5%. A homogeneous single-zone model coupled with a detailed reaction mechanism was used to simulate the process. The experimental results and the simulation were in good agreement for operating points without frequent misfires.

Keywords: engine; combustion; combustion engine; internal combustion; ignition; exergetic efficiency

Journal Title: Fuel
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.