LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst

Photo by curioso from unsplash

Abstract Bio-jet fuel range alkanes were prepared by catalytic deoxygenation reaction of non-edible acid oils with no added hydrogen. A WOx[6]/Pt[1.6]/TiO2 was used for the deoxygenation of stearic acid and… Click to show full abstract

Abstract Bio-jet fuel range alkanes were prepared by catalytic deoxygenation reaction of non-edible acid oils with no added hydrogen. A WOx[6]/Pt[1.6]/TiO2 was used for the deoxygenation of stearic acid and Jatropha fatty acid derived from Jatropha oil by hydrolysis. Tungsten addition to the Pt/TiO2 showed remarkably enhanced performance, a degree of deoxygenation of 86%, which is more than two times higher than that of the Pt/TiO2, even though the WOx/TiO2 had almost no activity for deoxygenation reaction. The enhanced Pt-related hydrogen uptake, measured by H2-TPR, and XPS analysis showed the intimate contact of tungsten with Pt nanoparticles supported on TiO2. This tight contact allows for easier C C cleavage over Pt nanoparticles and this is assisted by the strong bonding between tungsten and oxygen in the reactant, resulting in more C17 hydrocarbon production on the WOx/Pt/TiO2.

Keywords: fuel range; wox tio2; jet fuel; deoxygenation; bio jet

Journal Title: Fuel
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.