LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclically resolved flame and flow imaging in an alcohol fuelled SI engine

Photo by joshuanewton from unsplash

Abstract The work was concerned with improving understanding of the interaction of the bulk in-cylinder flow with turbulent premixed flame propagation when using varied fuels including iso-octane, ethanol or butanol.… Click to show full abstract

Abstract The work was concerned with improving understanding of the interaction of the bulk in-cylinder flow with turbulent premixed flame propagation when using varied fuels including iso-octane, ethanol or butanol. The experiments were performed in a single cylinder research engine equipped with a modern central direct injection combustion chamber and Bowditch style optical piston. Results were obtained under typical part-load engine operating conditions. High speed cross-correlated particle image velocimetry was undertaken at 1500 rpm under motoring conditions with the plenum pressure set to 0.5 bar absolute, with the horizontal imaging plane fixed 10 mm below the combustion chamber “fireface”. Comparisons were made to CFD computations of the flow. Complementary flame images were then obtained via natural light (chemiluminescence) over multiple engine cycles. The flame images revealed the tendency of the flame to migrate towards the hotter exhaust side of the combustion chamber, with no complementary bulk air motion apparent in this area in the imaging plane. In terms of fuel effects, the addition of 16% butanol to iso-octane resulted in marginally faster combustion. Fastest combustion was observed with ethanol, in good agreement with laminar burning velocity correlations within the literature. The ethanol could be seen to offset the tendency of migration of the flame toward the exhaust walls under the fixed spark timing conditions. This exhaust migration phenomenon has been noted previously by others in optical pent-roofed engines but without both flow and flame imaging data being available. The results may imply that the spark plug should ideally be biased further towards the intake side of the chamber if the flame is to approach the intake and exhaust walls at similar times resulting in symmetrical flame propagation, reduced premature wall quenching and hence increase combustion stability and thermal efficiency. Such a layout is typically not preferred due to the priority given to the central fuel injector (and associated cooling jacket) location and maximizing the size of the inlet valves for improved volumetric efficiency.

Keywords: combustion chamber; flame; flow; engine

Journal Title: Fuel
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.