LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical and rheological assessment of produced biolubricants from different vegetable oils

Photo from academic.microsoft.com

Abstract Environment-friendly ethylene glycol di-esters (EGDEs) as, biolubricants were produced from different vegetable oils by applying CaO as a heterogeneous base catalyst through transesterification of fatty acid methyl esters (FAMEs)… Click to show full abstract

Abstract Environment-friendly ethylene glycol di-esters (EGDEs) as, biolubricants were produced from different vegetable oils by applying CaO as a heterogeneous base catalyst through transesterification of fatty acid methyl esters (FAMEs) and ethylene glycol (EG). The feedstocks used were sunflower, soybean, jatropha, and waste cooking oils. The molar ratio of FAMEs to EG was 2:1, catalyst dose (1.2% w/w), and temperature 150 °C for 2 h reaction time; under vacuum were the transesterification conditions. The produced biolubricants were identified using FTIR technique. The thermal stability of each produced biolubricants was examined using TGA technique. The viscosity indexes of the produced EGDEs were calculated and their values exceeded 140 for waste oil to 311 for Jatropha oil. The rheology characteristics, that define the nature of the produced biolubricants, were determined. This study proved that the production of different biolubricants having suitable chemical and rheological properties fitted to be used as commercialized industrial lubricants.

Keywords: assessment produced; chemical rheological; vegetable oils; rheological assessment; different vegetable; produced biolubricants

Journal Title: Fuel
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.