LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights on the role of primary and secondary tar reactions in soot inception during fast pyrolysis of coal

Photo by imdahkamy from unsplash

Abstract In the present work fast pyrolysis of coal in N2 and CO2 atmospheres was studied in a drop tube reactor (DTR) and in a heated strip reactor (HSR). In… Click to show full abstract

Abstract In the present work fast pyrolysis of coal in N2 and CO2 atmospheres was studied in a drop tube reactor (DTR) and in a heated strip reactor (HSR). In the DTR the volatiles generated by coal pyrolysis were entrained in a hot gas stream and were collected at the reactor outlet by tar traps. In the HSR, the volatiles were ejected from the hot coal particles into a cool environment and the condensable species, including primary tar, deposited and/or condensed on a glass bridge located above the heated strip. The composition of tars produced in the two reactors was compared to study the role of gas tar reactions in soot inception, and reference compounds for each class of tar species produced were identified. In the DTR the formation and growth of polycyclic aromatic hydrocarbons (PAH) were found higher than in the HSR. Soot formation occurred only in the DTR, being negligible in the HSR. It was concluded that the hot gas environment of the DTR favours secondary tar reactions, formation of PAH and eventually soot, while in the HSR this path was prevented due to prompt cooling down of volatiles. The presence of large concentration of CO2 in the pyrolysis atmospheres further promoted formation of heavy PAH and soot in the DTR, but not in the HSR, where the cooler environment limits soot-CO2 reactions in the gas phase.

Keywords: tar; fast pyrolysis; tar reactions; dtr; coal

Journal Title: Fuel
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.