LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine

Photo from wikipedia

Abstract Large Eddy Simulations (LES) of the non-reacting flow and mixing fields in a Rotating Detonation Engine (RDE) from Air Force Research Laboratory (AFRL) are performed. Effects of the total… Click to show full abstract

Abstract Large Eddy Simulations (LES) of the non-reacting flow and mixing fields in a Rotating Detonation Engine (RDE) from Air Force Research Laboratory (AFRL) are performed. Effects of the total number of fuel injection orifices and air flow rates on the mixing in the AFRL RDE are studied using a periodic burner sector with five injection orifices. The instantaneous vortex structures and shock wave in the non-reactive AFRL RDE are identified, and the structures are found to be similar to those in jet in crossflow. Also, the compositional non-uniformity in the height and azimuthal directions of the burner is observed. The mixing efficiency, root-mean-square value of the hydrogen mass fraction and mixing area ratios are introduced to quantify the mixing process. The observations from LES qualitatively justify the behaviors of detonation fronts observed in the experiments. Finally, results based on full scale AFRL RDE are briefly discussed.

Keywords: large eddy; reacting flow; detonation; flow mixing; mixing; non reacting

Journal Title: Fuel
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.