LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced low-temperature CO/CO2 methanation performance of Ni/Al2O3 microspheres prepared by the spray drying method combined with high shear mixer-assisted coprecipitation

Photo from wikipedia

Abstract Ni/Al2O3 spherical catalysts were prepared by high shear mixer (HSM)-assisted coprecipitation (CP) and spray drying (SD) method for carbon monoxide (CO) and carbon dioxide (CO2) methanation. The effect of… Click to show full abstract

Abstract Ni/Al2O3 spherical catalysts were prepared by high shear mixer (HSM)-assisted coprecipitation (CP) and spray drying (SD) method for carbon monoxide (CO) and carbon dioxide (CO2) methanation. The effect of HSM technology on low-temperature methanation performance was studied. Ni/Al2O3 (HSM-CP-SD) catalysts provide excellent performance such as CO conversion of 100% and CH4 selectivity of 90% at 300 °C; the CO2 conversion was 86.2% and CH4 selectivity was 95.3% at 350 °C. Even at 200 °C, the catalyst prepared by HSM still offers a CO conversion of 90% and CH4 selectivity of 82%, whereas the Ni/Al2O3 (CP-SD) has no activity. The high performance was attributed to the small Ni nanoparticles and high dispersion. The Ni/Al2O3 (HSM-CP-SD) catalysts exhibit micro-spherical morphology with a big pore size of 3.46 nm, stronger metal-support interactions, and CO adsorption capacity. The catalyst prepared by HSM shows potential application for CO/CO2 methanation, and HSM technology can optimize other heterogeneous catalytic reactions.

Keywords: co2; performance; hsm; high shear; methanation; co2 methanation

Journal Title: Fuel
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.