LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A study of the sooting behavior of hydro-processed renewable jet and petroleum jet fuels in a laminar counter-flow flame

Photo by curioso from unsplash

Abstract In this study, the soot formation behavior of hydro-processed renewable jet and petroleum jet fuels (Jet-A1, and JP-5) was investigated using a laminar counter-flow diffusion flame. Laser-induced incandescence was… Click to show full abstract

Abstract In this study, the soot formation behavior of hydro-processed renewable jet and petroleum jet fuels (Jet-A1, and JP-5) was investigated using a laminar counter-flow diffusion flame. Laser-induced incandescence was utilized to measure the soot volume fraction. The soot particle morphology of the fuels was characterized using transmission electron microscopy (TEM). It was found that the highest soot volume fraction was obtained in the following order: JP-5 > Jet-A1 > HRJ. Modifications to the reactant concentrations were observed to strongly influence the soot volume fraction by as much as 81%, 60%, and 64% for HRJ, JP-5, and Jet A1, respectively, and led to an increase in the soot particle diameter by as much as 26%, 15% and 10% for HRJ, JP-5, and Jet-A1, respectively. Both petroleum jet fuels reported soot particle diameters that were double those of the HRJ fuels. The fuel with higher H/C ratio (i.e. HRJ) had the lowest soot volume fraction. The smoke point results were found to have a positive correlation with the soot volume fraction for all of the tested fuels.

Keywords: jet; soot; petroleum jet; volume fraction; soot volume; jet fuels

Journal Title: Fuel
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.