LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of ethyl levulinate fuel bioadditive from 5-hydroxymethylfurfural over sulfonic acid functionalized biochar catalysts

Photo by austriannationallibrary from unsplash

Abstract In this work, a series of novel -SO3H functionalized biochar materials were prepared and investigated for the first time as catalysts for the production of fuel additive ethyl levulinate… Click to show full abstract

Abstract In this work, a series of novel -SO3H functionalized biochar materials were prepared and investigated for the first time as catalysts for the production of fuel additive ethyl levulinate (EL) from biomass-derived 5-hydroxymethylfurfural (HMF). The employed biochar was directly produced from vineyard pruning wastes by a simple hydrothermal treatment using water in subcritical conditions followed by 3 different one-step sulfonation processes. The effects of sulfonating agent, reaction temperature, reaction time and alcohol solvent were examined. Full HMF conversion together with outstanding EL yields (over 84%) were achieved at 130 °C and after 6 h over the biochar functionalized with the organosilane 2-(4-chlorosulphonylphenyl)ethyltrimetoxysilane (BioC-S3). Catalyst characterization suggested that the high acid strength (0.983 mmol H+·g−1) derived from the anchoring of arylsulfonic groups were responsible for the promotion of acid-driven etherification and ethanolysis steps. The BioC-S3 catalyst can be recycled without a significant loss of catalytic activity, indicating the stability of – SO3H organosilane group structure in the porous biochar. The obtained results offer a competitive alternative for the production of fuel additives, such as alkyl levulinates, using low-cost and easy-to-prepare biochar-based catalysts, all from lignocellulose resources, as an example to support a future exploitation of a potential biorefinery.

Keywords: functionalized biochar; ethyl levulinate; production; fuel; biochar; acid

Journal Title: Fuel
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.