LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Saprotrophic proteomes of biotypes of the witches' broom pathogen Moniliophthora perniciosa.

Photo by eprouzet from unsplash

Nine geographically diverse Moniliophthora perniciosa (witches' broom disease pathogen) isolates were cultured in vitro. They included six C-biotypes differing in virulence on cacao (Theobroma cacao), two S-biotypes (solanaceous hosts), and… Click to show full abstract

Nine geographically diverse Moniliophthora perniciosa (witches' broom disease pathogen) isolates were cultured in vitro. They included six C-biotypes differing in virulence on cacao (Theobroma cacao), two S-biotypes (solanaceous hosts), and an L-biotype (liana hosts). Mycelial growth rates and morphologies differed considerably, but no characters were observed to correlate with virulence or biotype. In plant inoculations using basidiospores, one C-biotype caused symptoms on tomato (an S-biotype host), adding to evidence of limited host adaptation in these biotypes. Mycelial proteomes were analysed by two-dimensional gel electrophoresis (2-DE), and 619 gel spots were indexed on all replicate gels of at least one strain. Multivariate analysis of gel spots discriminated the L-biotype, but not the S-biotypes, from the remaining strains. The proteomic similarity of the S- and C-biotypes is consistent with their reported lack of phylogenetic distinction. Sequences from tandem mass spectrometry of tryptic peptides from major 2-DE spots were matched with Moniliophthora genome and transcript sequences on NCBI and WBD Transcriptome Atlas databases. Protein-spot identifications indicated that M. perniciosa saprotrophic mycelial proteomes expressed functions potentially connected with a 'virulence life-style', including peroxiredoxin, heat-shock proteins, nitrilase, formate dehydrogenase, a prominent complement of aldo-keto reductases, mannitol-1-phosphate dehydrogenase, and central metabolism enzymes with proposed pathogenesis functions.

Keywords: pathogen; saprotrophic proteomes; witches broom; perniciosa saprotrophic; moniliophthora perniciosa

Journal Title: Fungal biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.