LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Corrosion of stainless steels in the riser during co-processing of bio-oils in a fluid catalytic cracking pilot plant

Photo from wikipedia

Abstract Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. However, bio-oils… Click to show full abstract

Abstract Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. However, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. A catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h were studied. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. The internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.

Keywords: catalytic cracking; fluid catalytic; corrosion; processing bio; bio; bio oils

Journal Title: Fuel Processing Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.