LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conversion of N-acetyl-d-glucosamine to nitrogen-containing chemicals in high-temperature water

Photo by nci from unsplash

To demonstrate the conversion of renewable biomass to platform chemicals, we previously reported the noncatalytic conversion of N-acetyl-d-glucosamine (GlcNAc), which is obtained from chitin, to nitrogen-containing chemicals; however, various aspects… Click to show full abstract

To demonstrate the conversion of renewable biomass to platform chemicals, we previously reported the noncatalytic conversion of N-acetyl-d-glucosamine (GlcNAc), which is obtained from chitin, to nitrogen-containing chemicals; however, various aspects of this process were not clarified. Herein, we reported updated and expanded results for the synthesis of nitrogen-containing chemicals from GlcNAc in high-temperature water at 180–280 °C and 25 MPa with a reaction time of 5–34 s. The main products were 2-acetamido-2,3-dideoxy-d-erythro-hex-2-enofuranose (Chromogen I) and 3-acetamido-5-(1′,2′-dihydroxyethyl)furan (Chromogen III) with the maximum yields of 37.0% and 34.5%, respectively. Although 3-acetamido-5-acetylfuran was expected to form by the dehydration of Chromogen III, a yield of only <1% was obtained, likely because the dehydration of Chromogen III is difficult in the absence of a catalyst. The evaluation of the effects of acid and base catalysts on the dehydration of GlcNAc revealed that the acid catalyst suppressed the transformation of GlcNAc to Chromogen I and promoted the transformation of Chromogen I to Chromogen III, whereas the base catalyst had the opposite effects on these processes. The synthesis of nitrogen-containing chemicals from GlcNAc in high-temperature water is an environmentally benign method for utilizing renewable chitin biomass.

Keywords: containing chemicals; conversion; chromogen; high temperature; temperature water; nitrogen containing

Journal Title: Fuel Processing Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.