LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Biodiesel impurities (K, Na, P) on non-catalytic and catalytic activities of Diesel soot in model DPF regeneration conditions

Photo from wikipedia

Abstract The impact of Biodiesel impurities (Na, K and P) on the non-catalytic and catalytic reactivity of Diesel soot was evaluated under model DPF (Diesel Particulate Filter) regeneration conditions. Temperature-programmed… Click to show full abstract

Abstract The impact of Biodiesel impurities (Na, K and P) on the non-catalytic and catalytic reactivity of Diesel soot was evaluated under model DPF (Diesel Particulate Filter) regeneration conditions. Temperature-programmed oxidation (TPO) measurements confirmed that Na and K depositing into soot or on the surface of the catalyst enhanced the oxidative reactivity of soot under both O2 and NOx + O2 and Na-doped samples showed better results. However, the presence of P inhibited the non-catalytic and catalytic reactivity. These findings can be mainly attributed to the changes in nanostructure and surface chemical properties of the doped samples, characterized by Raman, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NO temperature-programmed oxidation (NO-TPO). The result of this characterization evidenced that the presence of Na and K increased structural defects of soot and reduction ability of the catalyst. Moreover, Na-/K-doped catalysts presented higher oxidizing ability of NO into NO2, whereas the opposite trend was observed for the P-containing catalysts. In addition, higher structural disorder of Na-doped soot and higher alkali metal content on the surface of Na-doped catalyst might lead to enhanced reactivity in comparison to K-doped soot and catalyst.

Keywords: catalytic catalytic; diesel soot; non catalytic; impurities non; biodiesel impurities; model dpf

Journal Title: Fuel Processing Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.