LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical assessment of the thermomechanical behaviour of the DEMO Water-Cooled Lithium Lead inboard blanket equatorial module

Photo from wikipedia

Abstract Within the framework of EUROfusion R&D activity, a research campaign has been carried out at the University of Palermo, in close cooperation with ENEA labs, in order to assess… Click to show full abstract

Abstract Within the framework of EUROfusion R&D activity, a research campaign has been carried out at the University of Palermo, in close cooperation with ENEA labs, in order to assess the thermo-mechanical performances of the DEMO Water-Cooled Lithium Lead (WCLL) inboard blanket equatorial module, whether properly integrated within its whole inboard segment. In particular, a detailed 3D model of this segment, including all the other modules, the back-supporting structure and the attachment system, has been considered in order to realistically simulate the boundary conditions affecting the equatorial module behaviour. The study has been focused on the investigation of the module thermo-mechanical performances under the Over Pressurization (Level D) loading scenario envisaged for the DEMO WCLL breeding blanket as a consequence of a small in-box Loss Of Coolant Accident (LOCA) accident. A theoretical-numerical approach, based on the Finite Element Method (FEM), has been followed and the qualified ABAQUS v. 6.14 commercial FEM code has been adopted. The obtained thermo-mechanical results have been assessed in order to verify their compliance with the design criteria foreseen for the structural material. To this purpose, a stress linearization procedure has been performed along the most critical paths located within the inboard equatorial module structure, in order to check the fulfilment of Level D rules prescribed by the SDC-IC structural design code. The obtained results are herewith presented and critically discussed.

Keywords: water cooled; module; inboard; blanket; demo water; equatorial module

Journal Title: Fusion Engineering and Design
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.