LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a WCLL DEMO First Wall design module in the SYCOMORE system code interfaced with the neutronic one

Photo from wikipedia

Abstract The pre-conceptual design of the DEMOnstration reactors has already started and several tokamak configurations have to be tested to find the best design by exploring different design parameters. Fast… Click to show full abstract

Abstract The pre-conceptual design of the DEMOnstration reactors has already started and several tokamak configurations have to be tested to find the best design by exploring different design parameters. Fast simulations involving the different components behavior must be performed. Within the European framework, SYCOMORE (SYstem COde for MOdelling tokamak REactor) is developed by CEA for this purpose. The Breeding Blanket (BB) facing the plasma is a key component in DEMO ensuring tritium self-sufficiency, shielding against neutrons and heat extraction for electricity production. Several BB concepts are being studied, among which the Water Cooled Lithium Lead (WCLL) one. SYCOMORE includes several specific modules in Python linked together, one of which has been developed to define a suitable design of the WCLL Breeding Blanket and is presented in this paper. The method to define automatically the WCLL First Wall (FW) design using analytical design formulae starting from thermo-hydraulic and thermo-mechanical considerations as well as design criteria coming from Codes & Standards (C&S) is presented. Furthermore WCLL FW design obtained with SYCOMORE is compared to Finite Elements (FE) analyses of the DEMO WCLL BB. Finally, a coupling between thermo-mechanics and neutronics is implemented, several iterations are necessary to obtain a converged design. Neutronic block evaluates the radial build, the BB tritium production, and the nuclear heating in the FW and the Breeding Zone (used by thermo-mechanical block). Thermo-mechanical module gives the design data (FW thickness, compositions, etc.) to the neutronic block.

Keywords: sycomore system; wall design; first wall; system code; sycomore; design

Journal Title: Fusion Engineering and Design
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.