LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal fatigue behavior of functionally graded W/EUROFER-layer systems using a new test apparatus

Photo from wikipedia

Abstract In future fusion reactors tungsten coatings shall protect First Wall components, made of reduced activation ferritic martensitic steel, against the plasma, because of tungsten’s favourable thermo-mechanical properties and low… Click to show full abstract

Abstract In future fusion reactors tungsten coatings shall protect First Wall components, made of reduced activation ferritic martensitic steel, against the plasma, because of tungsten’s favourable thermo-mechanical properties and low sputtering yield. Functionally graded material layers implemented between the coating and the steel substrate, compensate the difference in the coefficient of thermal expansion. By using the vacuum plasma spraying technique several layer systems were successfully produced and tested, among other aspects, in regard to their thermal fatigue behaviour up to 500 thermal cycles in a vacuum furnace. However, higher numbers of thermal cycles are anticipated for future fusion reactors and, therefore, a less time consuming approach for thermal fatigue testing is required. Hence, a new testing apparatus with induction heating and inert gas cooling was built and first thermal fatigue experiments with up to 5000 cycles were carried out on different functionally graded tungsten/steel layers systems. The subsequent investigations of these samples show that the layer systems are stable for the applied number of thermal cycles and their properties are solely determined during their respective coating processes.

Keywords: functionally graded; thermal fatigue; layer systems; thermal cycles

Journal Title: Fusion Engineering and Design
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.