LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of flow channel insert deformations influence on the liquid metal flow in DCLL blanket channels

Photo by janfillem from unsplash

Abstract The dual coolant lithium lead (DCLL) is a candidate to be an effective breeding blanket (BB) concept for nuclear fusion technologies. One critical point of this design is the… Click to show full abstract

Abstract The dual coolant lithium lead (DCLL) is a candidate to be an effective breeding blanket (BB) concept for nuclear fusion technologies. One critical point of this design is the magnetohydrodynamic (MHD) effects involving Lorentz damping force which produces relevant pressure drop in the eutectic flow. In the framework of the European DEMO, the application of sandwich-like steel–alumina–steel flow channel insert (FCI) seems to be the best solution to reduce the pressure drop by electrically decoupling the liquid PbLi from the Eurofer walls. The impact of the FCI on the PbLi velocity profile is analyzed in this work with a CFD solver implemented on OpenFOAM. Under the assumption of non-buoyant fully developed channel flow the temperature map in the channel is computed. Based on the temperature field, the induced deformation is evaluated. The effects of the FCI deformation and possible rupture of the FCI on the velocity profile and on the corresponding pressure drop are then parametrically investigated. Results show that the deformation of the FCI and the possible break in the Hartmann wall do not lead to significant variations in the pressure drop from the case of intact FCI in a wide range of interaction parameters.

Keywords: flow channel; pressure drop; dcll; channel; channel insert; flow

Journal Title: Fusion Engineering and Design
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.