LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Natural occurrence of nanocrystalline Al-hydroxysulfates: Insights on formation, Al solubility control and As retention

Photo by erol from unsplash

Abstract Nanocrystalline basaluminite [Al4OH10(SO4)·(H2O)3–5] and aggregation of the e-Keggin polyoxocation [Al12(AlO4)(OH)24(H2O)12]7+, referred to as Al13, have both been described to form in acid mine drainage environments. Although the chemical composition… Click to show full abstract

Abstract Nanocrystalline basaluminite [Al4OH10(SO4)·(H2O)3–5] and aggregation of the e-Keggin polyoxocation [Al12(AlO4)(OH)24(H2O)12]7+, referred to as Al13, have both been described to form in acid mine drainage environments. Although the chemical composition is quite similar, their crystalline varieties significantly differ, demonstrating that various types of Al-hydroxysulfates can form under similar conditions and that their respective formation is not fully understood yet. Here, we report the occurrence of nanocrystalline precipitates that form naturally in a small alpine catchment in Switzerland where an acidic mountainous stream (pH ∼ 4) is neutralized successively after mixing with several neutral tributaries. The stepwise neutralization in conjunction with the large amount of precipitates provide an ideal setting for obtaining new insights into (i) the structure of naturally forming Al-hydroxysulfates, (ii) their formation mechanism, (iii) their role in controlling the solubility of Al, and (iv) their ability to lower the mobility of As. Synchrotron-based high-energy X-ray diffraction and subsequent pair distribution function analyses demonstrate that these precipitates are structurally identical to basaluminite samples obtained from acid mine drainage sites. In contrast, only minor amounts of tetrahedrally coordinated Al, as present in Al13, were identified by nuclear magnetic resonance spectroscopy. The precipitates are further characterized by elevated As concentrations up to 600 μg/g, whereas other heavy metals are at background concentrations only. Given the low As concentrations in the stream from which precipitation occurs (

Keywords: natural occurrence; nanocrystalline hydroxysulfates; occurrence nanocrystalline; formation; solubility

Journal Title: Geochimica et Cosmochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.